If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-234x+634=0
a = 14; b = -234; c = +634;
Δ = b2-4ac
Δ = -2342-4·14·634
Δ = 19252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19252}=\sqrt{4*4813}=\sqrt{4}*\sqrt{4813}=2\sqrt{4813}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-234)-2\sqrt{4813}}{2*14}=\frac{234-2\sqrt{4813}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-234)+2\sqrt{4813}}{2*14}=\frac{234+2\sqrt{4813}}{28} $
| 35+8l=-15 | | 20+9x=-4 | | -25+3k=50 | | -1x-x0.07=-12.35 | | 12.35=(x)0.07+x | | 6p=2=4+5p | | 2k/4=-2 | | 18y+6=12y= | | 0.15+0.6/x=0.75 | | 6^(2n)=12 | | 34+2y=68 | | x+x*0.18=70000 | | 69x*5-16=231*231x+12x | | 3.14159265359+x=4 | | -6/5x=-3/7-3/8+3x | | -3/x=2/5+3/2x-7 | | -5/2x=2+4/5+x | | 4/15x-18=9x-4/9 | | 14x2–43x=21 | | 3/4x=2/3x-11 | | 8+|6y-5=21 | | 8/d+3=4 | | -10/11x+10/11=-11 | | 2x+x/5=22 | | -2x-10(-6x+4x+1)=2x-6 | | 2^x+2=64 | | -4+3(15x-11x-5)=2x-5 | | x+2(-16x-11x-10)=-3 | | 8(2x+4x+1)=56 | | 1/4-2x-7/8=x/2 | | -5(-10x+3)+8(-6x-5)=-15 | | 0•6a=0•36 |